Fuel, Moderator and Reactor Arrangement

Self Sustaining Chain Reaction

🕹 Natural uranium fuel

- Fission of U-235 highly probably with thermal neutrons
- Neutrons near resonance peaks of U-238 will likely undergo radiative capture
- Neutrons must be slowed away from the fuel
- In fuel neutrons have about a 50:50 chance of being absorbed by U-235 and U-238
 - Must slow down and and put \approx 2 neutrons per fission back into fuel

Moderation

Moderation

Weutrons are slowed by bouncing off other nuclei

- Mostly elastic collisions
- Basic requirements of moderator
 - Slow neutrons in a minimum of collisions
 - Keep distances small
 - Maximum kinetic transfer in collision is between particles of equal mass
 - Absorb only a few neutrons

Moderators

8

Moderator	# of collisions	σ_{s}	σ_{a}
H ₂ O	20	103	0.664
D ₂ O	36	13.6	0.0010
С	115	4.8	0.0034

Bottom Line

With natural U_2O the only moderator is heavy water.

Fresh and Equilibrium Fuelling

$${}^{1}_{0}n + {}^{238}_{92}U \rightarrow {}^{239}_{92}U + \gamma$$

$${}^{239}_{92}U \rightarrow {}^{239}_{93}Np + \beta + \gamma \quad T^{1/2} = 23.5 \text{ min.}$$

$${}^{239}_{93}Np \rightarrow {}^{239}_{94}Pu + \beta + \gamma \quad T^{1/2} = 2.35 \text{ d.}$$

Pu-239 is fissile
 Some fuel is produced
 Fission products slowly build
 Adds neutron absorbers

Axial Reactor Arrangement

Radial Reactor Arrangement

Distance between channels is the lattice pitch